Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.834
1.
Methods Mol Biol ; 2807: 261-270, 2024.
Article En | MEDLINE | ID: mdl-38743234

The development of 3D-organoid models has revolutionized the way diseases are studied. Recently, our brain organoid model has been shown to recapitulate in in vitro the human brain cytoarchitecture originally encountered in HIV-1 neuropathogenesis, allowing downstream applications. Infected monocytes, macrophages, and microglia are critically important immune cells for infection and dissemination of HIV-1 throughout brain during acute and chronic phase of the disease. Once in the brain parenchyma, long-lived infected monocytes/macrophages along with resident microglia contribute to the establishment of CNS latency in people with HIV (PWH). Hence, it is important to better understand how HIV-1 enters and establishes infection and latency in CNS to further develop cure strategies. Here we detailed an accessible protocol to incorporate monocytes (infected and/or labeled) as a model of transmigration of peripheral monocytes into brain organoids that can be applied to characterize HIV-1 neuroinvasion and virus dissemination.


Brain , HIV Infections , HIV-1 , Monocytes , Organoids , Organoids/virology , Organoids/pathology , Humans , HIV-1/physiology , HIV-1/pathogenicity , Monocytes/virology , Monocytes/immunology , HIV Infections/virology , HIV Infections/immunology , HIV Infections/pathology , Brain/virology , Brain/pathology , Brain/immunology , Microglia/virology , Microglia/immunology , Microglia/pathology , Macrophages/virology , Macrophages/immunology , Virus Latency
2.
Proc Natl Acad Sci U S A ; 121(19): e2313823121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683980

HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.


Cell Differentiation , HIV Infections , HIV-1 , Homeostasis , Macrophages , Monocytes , Oxidation-Reduction , Reactive Oxygen Species , Virus Activation , Virus Latency , Humans , Virus Latency/physiology , Macrophages/virology , Macrophages/metabolism , Monocytes/virology , Monocytes/metabolism , HIV-1/physiology , HIV Infections/virology , HIV Infections/metabolism , Virus Activation/physiology , Reactive Oxygen Species/metabolism , THP-1 Cells , Signal Transduction , Protein Kinase C/metabolism
3.
J Virol ; 98(5): e0036324, 2024 May 14.
Article En | MEDLINE | ID: mdl-38661384

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


HIV-1 , Lipopolysaccharide Receptors , Lipopolysaccharides , Signal Transduction , Toll-Like Receptor 4 , Virion , Humans , HIV-1/immunology , HIV-1/physiology , Lipopolysaccharide Receptors/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/metabolism , Virion/metabolism , HIV Infections/virology , HIV Infections/immunology , HIV Infections/metabolism , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism , Chemokine CCL5/metabolism
4.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658802

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Brain , Herpesvirus 1, Human , La Crosse virus , Mice, Knockout , Monocytes , Receptors, CCR2 , Receptors, CCR7 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Brain/virology , Brain/metabolism , Brain/immunology , Herpesvirus 1, Human/physiology , La Crosse virus/genetics , La Crosse virus/physiology , Receptors, CCR7/metabolism , Receptors, CCR7/genetics , Encephalitis, California/virology , Encephalitis, California/genetics , Encephalitis, California/metabolism , Encephalitis, California/immunology , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/virology , Female , Male
5.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38289104

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Cytomegalovirus , Host Microbial Interactions , Mechanistic Target of Rapamycin Complex 1 , Monocytes , Protein Biosynthesis , RNA, Messenger , Humans , Apoptosis , Cell Survival/genetics , Cytomegalovirus/growth & development , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/transmission , Cytomegalovirus Infections/virology , Feedback, Physiological , Mechanistic Target of Rapamycin Complex 1/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , Phosphatidylinositol 3-Kinases/metabolism , Polyribosomes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sirtuin 1/biosynthesis , Sirtuin 1/genetics , Sirtuin 1/metabolism , Virus Internalization
6.
J Virol ; 96(14): e0081922, 2022 07 27.
Article En | MEDLINE | ID: mdl-35862696

Human cytomegalovirus (HCMV) exhibits a complex host-pathogen interaction with peripheral blood monocytes. We have identified a unique, cell-type specific retrograde-like intracellular trafficking pattern that HCMV utilizes to gain access to the monocyte nucleus and for productive infection. We show that infection of primary human monocytes, epithelial cells, and fibroblasts leads to an increase in the amount of the trafficking protein Syntaxin 6 (Stx6). However, only knockdown (KD) of Stx6 in monocytes inhibited viral trafficking to the trans-Golgi network (TGN), a requisite step for nuclear translocation in monocytes. Conversely, KD of Stx6 in epithelial cells and fibroblasts did not change the kinetics of nuclear translocation and productive infection. Stx6 predominantly functions at the level of the TGN where it facilitates retrograde transport, a trafficking pathway used by only a few cellular proteins and seldom by pathogens. We also newly identify that in monocytes, Stx6 exhibits an irregular vesicular localization rather than being concentrated at the TGN as seen in other cell-types. Lastly, we implicate that viral particles that associate with both Stx6 and EEA1 early in infection are the viral population that successfully traffics to the TGN at later time points and undergo nuclear translocation. Additionally, we show for the first time that HCMV enters the TGN, and that lack of Stx6 prevents viral trafficking to this organelle. We argue that we have identified an essential cell-type specific regulator that controls early steps in efficient productive infection of a cell-type required for viral persistence and disease. IMPORTANCE Human cytomegalovirus (HCMV) infection causes severe and often fatal disease in the immunocompromised. It is one of the leading infectious causes of birth defects and causes severe complications in transplant recipients. By uncovering the unique pathways used by the virus to infect key cells, such as monocytes, responsible for dissemination and persistence, we provide new potential targets for therapeutic intervention.


Cytomegalovirus , Monocytes , Qa-SNARE Proteins , Cytomegalovirus/pathogenicity , Humans , Monocytes/virology , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Signal Transduction , trans-Golgi Network/metabolism
7.
J Leukoc Biol ; 112(3): 569-576, 2022 09.
Article En | MEDLINE | ID: mdl-35621385

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV2), which causes the disease COVID-19, has caused an unprecedented global pandemic. Angiotensin-converting enzyme 2 (ACE2) is the major cellular receptor for SARS-CoV2 entry, which is facilitated by viral Spike priming by cellular TMPRSS2. Macrophages play an important role in innate viral defense and are also involved in aberrant immune activation that occurs in COVID-19, and thus direct macrophage infection might contribute to severity of SARS-CoV2 infection. Here, we demonstrate that monocytes and monocyte-derived macrophages (MDM) under in vitro conditions express low-to-undetectable levels of ACE2 and TMPRSS2 and minimal coexpression. Expression of these receptors remained low in MDM induced to different subtypes such as unpolarized, M1 and M2 polarized. Untreated, unpolarized, M1 polarized, and M2 polarized MDM were all resistant to infection with SARS-CoV2 pseudotyped virions. These findings suggest that direct infection of myeloid cells is unlikely to be a major mechanism of SARS-CoV2 pathogenesis. Summary sentence: Monocytes and macrophages express minimal ACE2 and TMPRSS2 and resist SARS-CoV-2 Spike-mediated infection, suggesting direct myeloid cell infection is unlikely a major contributor to pathogenesis.


Angiotensin-Converting Enzyme 2 , COVID-19 , Macrophages , Monocytes , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Disease Resistance , Humans , Macrophages/metabolism , Macrophages/virology , Monocytes/metabolism , Monocytes/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Viral , SARS-CoV-2 , Serine Endopeptidases/metabolism
8.
Acta Trop ; 232: 106497, 2022 Aug.
Article En | MEDLINE | ID: mdl-35508271

Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1ß and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.


Chikungunya Fever , Chikungunya virus , Macrophages , Monocytes , Toll-Like Receptors , Virus Replication , Chikungunya Fever/virology , Chikungunya virus/drug effects , Cholecalciferol/pharmacology , Cytokines/biosynthesis , Humans , Macrophages/drug effects , Macrophages/virology , Monocytes/drug effects , Monocytes/virology , Toll-Like Receptors/biosynthesis , Virus Replication/drug effects , Vitamin D/pharmacology
9.
Biochem Biophys Res Commun ; 613: 41-46, 2022 07 12.
Article En | MEDLINE | ID: mdl-35526487

Varicella-zoster virus (VZV) first infects hematopoietic cells, with the infected cells then acting to distribute the virus throughout the body. Sialic acid-binding immunoglobulin-like lectin (Siglec) family molecules recognize sialic acid-containing molecules on the same cell surface, called cis-ligands, or molecules on other cells or soluble agents, called trans-ligands. Among the Siglec family molecules, Siglec-4 and Siglec-7 mediate VZV infection through association with glycoprotein B (gB). As Siglec-7, but not Siglec-4, is expressed on hematopoietic cells such as monocytes, the regulatory mechanism by which Siglec-7 associates with gB is important to our understanding of VZV infection of blood cells. Here, we found that Siglec-7 is required for VZV to infect human primary monocytes. Furthermore, treatment of primary monocytes with sialidase enhanced both VZV gB binding to monocytes and VZV infectivity. Calcium influx in primary monocytes decreased the expression of Siglec-7 cis-ligands and increased VZV infectivity. These results demonstrate that the Siglec-7 cis-ligands present on primary monocytes play an important role in VZV infection through regulation of the interaction between gB and Siglec-7.


Antigens, Differentiation, Myelomonocytic , Herpesvirus 3, Human , Lectins , Monocytes , Antigens, Differentiation, Myelomonocytic/metabolism , Herpesvirus 3, Human/physiology , Humans , Lectins/metabolism , Ligands , Monocytes/virology , N-Acetylneuraminic Acid , Sialic Acid Binding Immunoglobulin-like Lectins , Varicella Zoster Virus Infection/metabolism , Varicella Zoster Virus Infection/virology
10.
Nature ; 606(7914): 576-584, 2022 06.
Article En | MEDLINE | ID: mdl-35385861

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


COVID-19 , Inflammation , Monocytes , Receptors, IgG , SARS-CoV-2 , COVID-19/virology , Caspase 1/metabolism , DNA-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/virology , Monocytes/metabolism , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Receptors, IgG/metabolism
11.
Front Immunol ; 13: 815833, 2022.
Article En | MEDLINE | ID: mdl-35250994

The coronavirus disease-2019 (COVID-19) caused by the SARS-CoV-2 virus may vary from asymptomatic to severe infection with multi-organ failure and death. Increased levels of circulating complement biomarkers have been implicated in COVID-19-related hyperinflammation and coagulopathy. We characterized systemic complement activation at a cellular level in 49-patients with COVID-19. We found increases of the classical complement sentinel C1q and the downstream C3 component on circulating blood monocytes from COVID-19 patients when compared to healthy controls (HCs). Interestingly, the cell surface-bound complement inhibitor CD55 was also upregulated in COVID-19 patient monocytes in comparison with HC cells. Monocyte membrane-bound C1q, C3 and CD55 levels were associated with plasma inflammatory markers such as CRP and serum amyloid A during acute infection. Membrane-bounds C1q and C3 remained elevated even after a short recovery period. These results highlight systemic monocyte-associated complement activation over a broad range of COVID-19 disease severities, with a compensatory upregulation of CD55. Further evaluation of complement and its interaction with myeloid cells at the membrane level could improve understanding of its role in COVID-19 pathogenesis.


COVID-19/immunology , Complement Activation/immunology , Complement System Proteins/immunology , Monocytes/immunology , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Complement Inactivating Agents/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/immunology , Male , Middle Aged , Monocytes/virology , SARS-CoV-2/immunology
12.
Genome Med ; 14(1): 16, 2022 02 17.
Article En | MEDLINE | ID: mdl-35172892

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


CD8-Positive T-Lymphocytes/virology , COVID-19/genetics , COVID-19/pathology , Monocytes/virology , Single-Cell Analysis/methods , COVID-19/immunology , Computational Biology/methods , GPI-Linked Proteins/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Megakaryocyte Progenitor Cells/immunology , Megakaryocyte Progenitor Cells/virology , Monocytes/metabolism , Quantitative Trait Loci , Receptors, CCR1/immunology , Receptors, CCR1/metabolism , Receptors, CXCR6/immunology , Receptors, CXCR6/metabolism , Receptors, IgG/metabolism , Sequence Analysis, RNA , Severity of Illness Index
13.
Pathol Res Pract ; 231: 153782, 2022 Mar.
Article En | MEDLINE | ID: mdl-35121363

The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 outbreak, spread rapidly and infected more than 140 million people with more than three million victims worldwide. The SARS-CoV-2 causes destructive changes in the immunological and hematological system of the host. These alterations appear to play a critical role in disease pathology and the emerging of clinical manifestations. In this review, we aimed to discuss the effect of COVID-19 on the count, function and morphology of immune and blood cells and the role of these changes in the pathophysiology of the disease. Knowledge of these changes may help with better management and treatment of COVID-19 patients.


Blood Platelets/virology , Erythrocytes/virology , Granulocytes/virology , Monocytes/virology , SARS-CoV-2 , COVID-19/blood , COVID-19/virology , Cell Count , Cell Shape , Humans
14.
Viruses ; 14(2)2022 01 26.
Article En | MEDLINE | ID: mdl-35215840

Long non-coding RNA ß2.7 is the most highly transcribed viral gene during latent human cytomegalovirus (HCMV) infection. However, as yet, no function has ever been ascribed to ß2.7 during HCMV latency. Here we show that ß2.7 protects against apoptosis induced by high levels of reactive oxygen species (ROS) in infected monocytes, which routinely support latent HCMV infection. Monocytes infected with a wild-type (WT) virus, but not virus deleted for the ß2.7 gene (Δß2.7), are protected against mitochondrial stress and subsequent apoptosis. Protected monocytes display lower levels of ROS and additionally, stress-induced death in the absence of ß2.7 can be reversed by an antioxidant which reduces ROS levels. Furthermore, we show that infection with WT but not Δß2.7 virus results in strong upregulation of a cellular antioxidant enzyme, superoxide dismutase 2 (SOD2) in CD14+ monocytes. These observations identify a role for the ß2.7 viral transcript, the most abundantly expressed viral RNA during latency but for which no latency-associated function has ever been ascribed, and demonstrate a novel way in which HCMV protects infected monocytes from pro-death signals to optimise latent carriage.


Apoptosis , Cytomegalovirus/physiology , Monocytes/virology , RNA, Long Noncoding/genetics , RNA, Viral/genetics , Antioxidants/metabolism , Cells, Cultured , Cytomegalovirus/genetics , Humans , Lipopolysaccharide Receptors/metabolism , Mitochondria/metabolism , Monocytes/metabolism , Monocytes/pathology , Mutation , Oxidative Stress , Reactive Oxygen Species/metabolism , Virus Latency/genetics
15.
Viruses ; 14(2)2022 02 17.
Article En | MEDLINE | ID: mdl-35216002

Before the antiretroviral therapy (ART) era, people living with HIV (PLWH) experienced complications due to AIDS more so than aging. With ART and the extended lifespan of PLWH, HIV comorbidities also include aging-most likely due to accelerated aging-as well as a cardiovascular, neurocognitive disorders, lung and kidney disease, and malignancies. The broad evidence suggests that HIV with ART is associated with accentuated aging, and that the age-related comorbidities occur earlier, due in part to chronic immune activation, co-infections, and possibly the effects of ART alone. Normally the immune system undergoes alterations of lymphocyte and monocyte populations with aging, that include diminished naïve T- and B-lymphocyte numbers, a reliance on memory lymphocytes, and a skewed production of myeloid cells leading to age-related inflammation, termed "inflamm-aging". Specifically, absolute numbers and relative proportions of monocytes and monocyte subpopulations are skewed with age along with myeloid mitochondrial dysfunction, resulting in increased accumulation of reactive oxygen species (ROS). Additionally, an increase in biomarkers of myeloid activation (IL-6, sCD14, and sCD163) occurs with chronic HIV infection and with age, and may contribute to immunosenescence. Chronic HIV infection accelerates aging; meanwhile, ART treatment may slow age-related acceleration, but is not sufficient to stop aging or age-related comorbidities. Overall, a better understanding of the mechanisms behind accentuated aging with HIV and the effects of myeloid activation and turnover is needed for future therapies.


HIV Infections/immunology , Immunosenescence , Monocytes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Biomarkers , HIV Infections/pathology , HIV-1/immunology , Humans , Inflammation/immunology , Monocytes/virology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/immunology
16.
Viruses ; 14(1)2022 01 05.
Article En | MEDLINE | ID: mdl-35062296

Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV-5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV-5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive cells. In the present study, we used the transduction enhancer LentiBOOST® comprising the polycationic Polybrene to overcome these limitations. Using LentiBOOST®/Polybrene, we yielded transduction rates higher than 50% in murine bone marrow-derived dendritic cells (BMDCs), while maintaining their cytokine expression profile and their capability to induce T-cell proliferation. In human dendritic cells (DCs), we increased the transduction rate from 22% in immature (i)DCs or 43% in mature (m)DCs to more than 80%, without inducing cytotoxicity. While expression of specific maturation markers was slightly upregulated using LentiBOOST®/Polybrene on iDCs, no effect on mDC phenotype or function was observed. Moreover, we achieved efficient HAdV5 transduction also in human monocytes and were able to subsequently differentiate them into proper iDCs and functional mDCs. In summary, we introduce LentiBOOST® comprising Polybrene as a highly potent adenoviral transduction agent for new in-vitro applications in a set of different immune cells in both mice and humans.


Adenoviruses, Human/genetics , Dendritic Cells/virology , Monocytes/virology , Transduction, Genetic , Adenoviruses, Human/physiology , Animals , Cell Differentiation , Cell Proliferation , Dendritic Cells/immunology , Electroporation , Genetic Vectors , Hexadimethrine Bromide , Host Specificity , Humans , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/immunology , Phenotype , Virus Internalization
17.
Theranostics ; 12(1): 290-306, 2022.
Article En | MEDLINE | ID: mdl-34987646

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.


COVID-19/blood , COVID-19/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD8-Positive T-Lymphocytes/virology , COVID-19/mortality , Case-Control Studies , Chemokines/blood , Cytokines/blood , Female , Hospitalization , Humans , Killer Cells, Natural/virology , Logistic Models , Male , Middle Aged , Monocytes/virology , Prospective Studies , Respiratory Tract Infections/blood , Respiratory Tract Infections/immunology , Severity of Illness Index
18.
PLoS Pathog ; 18(1): e1010176, 2022 01.
Article En | MEDLINE | ID: mdl-35007290

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


COVID-19/microbiology , Cytokine Release Syndrome/complications , Cytokines/metabolism , Monocytes/virology , Neutrophils/virology , COVID-19/virology , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/virology , Humans , Lymphocytes/immunology , Lymphocytes/microbiology , Lymphocytes/virology , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , SARS-CoV-2/pathogenicity
19.
Biometals ; 35(1): 125-145, 2022 02.
Article En | MEDLINE | ID: mdl-34993712

The role of micronutrient deficiency in the pathogenesis of COVID-19 has been reviewed in the literature; however, the data are limited and conflicting. This study investigated the association between the status of essential metals, vitamins, and antioxidant enzyme activities in COVID-19 patients and disease severity. We recruited 155 patients, who were grouped into four classes based on the Adults guideline for the Management of Coronavirus Disease 2019 at King Faisal Specialist & Research Centre (KFSH&RC): asymptomatic (N = 16), mild (N = 49), moderate (N = 68), and severe (N = 22). We measured serum levels of copper (Cu), zinc (Zn), selenium (Se), vitamin D3, vitamin A, vitamin E, total antioxidant capacity, and superoxide dismutase (SOD). Among the patients, 30%, 25%, 37%, and 68% were deficient in Se (< 70.08 µg/L), Zn (< 0.693 µg/mL), vitamin A (< 0.343 µg/mL), and vitamin D3 (< 20.05 µg/L), respectively, and SOD activity was low. Among the patients, 28% had elevated Cu levels (> 1.401 µg/mL, KFSH&RC upper reference limit). Multiple regression analysis revealed an 18% decrease in Se levels in patients with severe symptoms, which increased to 30% after adjusting the model for inflammatory markers. Regardless of inflammation, Se was independently associated with COVID-19 severity. In contrast, a 50% increase in Cu levels was associated with disease severity only after adjusting for C-reactive protein, reflecting its possible inflammatory and pro-oxidant role in COVID-19 pathogenesis. We noted an imbalance in the ratio between Cu and Zn, with ~ 83% of patients having a Cu/Zn ratio > 1, which is an indicator of inflammation. Cu-to-Zn ratio increased to 45% in patients with mild symptoms and 34%-36% in patients with moderate symptoms compared to asymptomatic patients. These relationships were only obtained when one of the laboratory parameters (lymphocyte or monocyte) or inflammatory markers (neutrophil-to-lymphocyte ratio) was included in the regression model. These findings suggest that Cu/Zn might further exacerbate inflammation in COVID-19 patients and might be synergistically associated with disease severity. A 23% decrease in vitamin A was seen in patients with severe symptoms, which disappeared after adjusting for inflammatory markers. This finding may highlight the potential role of inflammation in mediating the relationship between COVID-19 severity and vitamin A levels. Despite our patients' low status of Zn, vitamin D3, and antioxidant enzyme (SOD), there is no evidence of their role in COVID-19 progression. Our findings reinforce that deficiency or excess of certain micronutrients plays a role in the pathogenesis of COVID-19. More studies are required to support our results.


COVID-19/blood , Copper/blood , SARS-CoV-2/pathogenicity , Selenium/blood , Zinc/blood , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Count , Cholecalciferol/blood , Humans , Lymphocytes/immunology , Lymphocytes/virology , Middle Aged , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , Regression Analysis , SARS-CoV-2/growth & development , Severity of Illness Index , Superoxide Dismutase/blood , Vitamin A/blood , Vitamin E/blood
20.
Methods Mol Biol ; 2407: 91-96, 2022.
Article En | MEDLINE | ID: mdl-34985660

Monocytes/macrophages play critical roles in HIV transmission, viral spread (early in infection), and as a reservoir of virus throughout infection. In the current research area in HIV, there has been a recent resurgence of interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, and as long-lived HIV reservoir. Thus, sensitive and specific techniques are needed to measure the impact of these cells in the establishment of the "hard-core" reservoir, and in their capacity to cause a low-level virus production during cART. Here, a protocol is presented for cell culture and HIV-1 infection of granulocyte-macrophage colony-stimulating factor (GM-CSF) differentiated human monocyte-derived macrophages.


Granulocyte-Macrophage Colony-Stimulating Factor , HIV Infections , Macrophages , Monocytes , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , HIV Infections/pathology , HIV-1 , Humans , Macrophages/virology , Monocytes/virology
...